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Abstract
We study the kinetics of diffusion-limited coalescence, A + A → A, and
annihilation, A + A → 0, in the Bethe lattice of coordination number z.
Correlations build up over time so that the probability of finding a particle next
to another varies from ρ2 (ρ is the particle density), initially, when the particles
are uncorrelated, to [(z−2)/z]ρ2, in the long-time asymptotic limit. As a result,
the particle density decays inversely proportionally to time, ρ ∼ 1/kt , but at a
rate k that slowly decreases to an asymptotic constant value.

1. Introduction

Diffusion-limited reactions are dominated by fluctuations at all length scales. In the absence
of a coherent approach for their analysis the simplest reaction schemes, such as one-species
coalescence, A + A → A, and annihilation, A + A → 0, have attracted the most attention [1].
In one-dimensional space their kinetics can be analysed exactly and is found to be anomalous—
at variance with the mean-field (reaction-limited) result: the density of particles decays as
ρ ∼ 1/

√
t . In two dimensions ρ ∼ ln t/t , and only in three dimensions and above does one

observe the mean-field result ρ ∼ 1/t [1].
Here we analyse coalescence and annihilation in the Bethe lattice of coordination number

z (figure 1). Our analysis, which is based on a generalization of the method of intervals [2–4],
shows that even in these infinite-dimensional objects fluctuations play an important role,
slowing down the rate of reactions. The correlation-free mean-field limit is achieved only
as z → ∞. Other reaction schemes have been studied on the Bethe lattice [5], including
trapping [6], diffusion-limited aggregation [7, 8]—a process related to data compression and
the Ziv-Lempel algorithm [8]—and annihilation between immobile reactants [9]. Diffusion in
the Bethe lattice is also of interest to probabilists because of its close analogy to diffusion in
hyperbolic (negative curvature) space [10]. From a practical viewpoint, our system models
exciton annihilation in extended dendrimers. These Cayley-tree-like macromolecules are being
studied as potential nanoscale antennae, for their light harvesting capabilities [11, 12].
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Figure 1. Bethe lattice, of coordination number z = 3.

The Bethe lattice of coordination number z may be obtained by starting from a single node
(at shell � = 0) that is connected to z neighbours, at � = 1. Each of the nodes in shell � > 0
is connected to (z − 1) nodes in shell � + 1 and the process continues indefinitely (figure 1).
When the construction stops, at shell � = L, say, the resulting graph is known as a Cayley tree.
The Bethe lattice is the interior of an infinite Cayley tree (i.e., it has no boundary). It is easy
to show, for example by induction, that a connected cluster of n nodes, in the Bethe lattice,
has exactly n(z − 2) + 2 neighbours (external nodes connected to the cluster), regardless of its
topology. The case of z = 2 degenerates to a one-dimensional chain and has been discussed
elsewhere [1, 2]. In the following we assume that z � 3. We further assume that each site of
the infinite Cayley tree is initially occupied by a particle A with probability p (or empty, with
probability 1 − p). Particles hop to one of their z nearest neighbours, chosen at random, at
constant unit rate. Thus, in one unit time all particles hop once, on average. If a particle hops
onto a node that is already occupied, the two particles disappear immediately, in the case of
annihilation, or they merge into a single particle (at the target site), in the case of coalescence.

2. Simpler models and approaches

2.1. The Smoluchowski model

To gain intuition into the problem, let us first look at the Smoluchowski reaction model: a
trap resides at the origin of the Bethe lattice, and the A particles disappear as soon as they
hit the trap, but otherwise do not interact with one another. This process is far simpler than
coalescence or annihilation, yet it lets us peek into the nature of correlations arising because of
reactions (with the trap).

Let ρ�(t) be the density of particles in shell �, at time t , then
d

dt
ρ�(t) = 1

z
(ρ�−1 − zρ� + (z − 1)ρ�+1) , � > 0,

ρ0(t) = 0.

(1)

The first equation reflects the fact that each site in shell � > 0 is connected to just one site
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in shell � − 1, and to (z − 1) sites in shell � + 1, while all particles hop at unit rate; the
second equation specifies the trapping reaction at the origin, � = 0, as a boundary condition.
Equations (1), with the initial condition ρ�(0) = p, admit the steady-state solution

ρ� = p
[
1 −

( 1

z − 1

)�]
. (2)

Thus, the density of particles next to the trap is depleted. Right next to the trap, at � = 1, the
density is reduced by a factor (z − 2)/(z − 1). The missing density decays exponentially away
from the trap. It is possible to interpret the depleted mass, p − ρ�, as a probability density,
by imposing normalization: p� = (z − 2)/(z − 1)�+1. From this we derive a characteristic
depletion distance from the trap, or a reaction correlation length, ξ = 〈�〉 = 1/(z − 2). At
z = 2 the correlation length is infinite: indeed, in one dimension the depletion zone near the
trap expands indefinitely, as

√
t , and there is no steady state. For z > 2 the correlation is finite,

but only in the limit of z → ∞ does one attain the ideal case of reaction-limited kinetics, where
the correlation vanishes.

2.2. Mean field

Consider now coalescence and annihilation in the Bethe lattice, assuming that correlations
can be ignored completely. The neglect of correlations is strictly justified only in reaction-
controlled processes and does not apply to the diffusion-controlled reactions we address in this
paper, yet it yields valuable physical insights. We shall refer to this limit as mean field.

The density of particles, ρ(t), is the same in all nodes, and since particles hop at unit rate
they meet one another at rate ρ2, regardless of the graph coordination number z. Thus, ρ(t)
satisfies the rate equation

d

dt
ρ(t) = −kρ2,

ρ(0) = p,
(3)

where k = 1 for coalescence, A + A → A, where only one particle is removed upon each
encounter, and k = 2 for annihilation, A+ A → 0, where two particles disappear. Equations (3)
have the solution

ρ(t) = 1

1/p + kt
, (4)

so mean-field analysis predicts an inverse-linear decay with time, ρ ∼ 1/kt , in the limit of
t → ∞.

We see that the neglect of correlations is disastrous for the case of z = 2 (one-dimensional
chain), where for diffusion-limited one-species reactions ρ ∼ 1/

√
t , instead of the mean-field

prediction of 1/t . For z > 2 the Bethe lattice is infinite dimensional: the number of nodes
within � shells increases exponentially with �—faster than any power (dimension) of �. Naively,
one would expect the mean-field limit to apply then, but the analysis of the Smoluchowski
model, above, suggests that correlations might play a certain role, so long as z < ∞.

3. Empty interval approximation

We now generalize the method of empty intervals, introduced for the exact solution of
coalescence on the line, to the case of coalescence in the Bethe lattice. The generalization
is not rigorous, but yields reasonable results. Let En(t) denote the probability that an n-cluster
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Figure 2. Probability Fn , for finding an empty n-cluster (empty oval) connected to an occupied
neighbour (•). The second symbol from the top denotes En+1, the probability for finding an (n+1)-
cluster empty. The sum of the two events equals En .

contains no particles at time t . The particle density (i.e., the probability that a site is occupied)
is

ρ(t) = 1 − E1(t). (5)

At time t = 0 the occupancies of nodes are independent of one another, so the probability that
an n-cluster is empty is

En(0) = (1 − p)n, n = 1, 2, . . . . (6)

Consider now changes to En(t). Any motion of particles within an n-cluster would not alter
En , since the (non-empty) cluster cannot become empty in this way. En changes only when a
particle hops into or out of the cluster. To follow these changes, we require the probability Fn

for having an n-cluster that is empty, connected to a node that is occupied. We may then write

d

dt
En(t) = n(z − 2) + 2

z
(Fn−1 − Fn) . (7)

The first term on the RHS denotes the event that a particle hops out from just inside the n-
cluster, leaving the cluster empty, thus increasing En . The starting configuration occurs with
probability Fn−1. The second term, proportional to Fn , accounts for a particle just outside an
empty n-cluster that hops into it: the cluster is not empty anymore and En decreases. Since the
n-cluster has n(z − 2) + 2 neighbours, and each particle hop (from one specific site to another)
occurs at rate 1/z, the overall rate for all of these processes is [n(z − 2) + 2]/z.

In order to close the evolution equation (7), we need to express Fn in terms of the En.
We note that the event that an n-cluster is empty (probability En) is the sum of the events that
a neighbouring node is also empty (probability En+1) and the event that the site is occupied
(probability Fn); see figure 2. Hence,

Fn = En − En+1. (8)

Using this in (7), we finally obtain

d

dt
En(t) = n(z − 2) + 2

z

(
En−1 − 2En + En+1

)
. (9)

This equation is valid for n = 2, 3, . . .. A separate analysis for the case of n = 1 shows that it
may be subsumed in equation (9), with the understanding that

E0(t) = 1. (10)

If the system contains a finite density of particles, initially, then an infinitely large cluster can
never become empty, thus

lim
n→∞ En(t) = 0. (11)

To summarize, we need to solve equations (9), for n = 1, 2, . . ., with the boundary
conditions (10), (11), and the initial condition (6). The particle density is then obtained
from (5).
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(a) (b)

Figure 3. Probability F2, in the Bethe lattice of z = 3. The expression F2 = E2 − E3 is correct
for configuration (a), but not for (b), where the empty sites do not form a connected 2-cluster (cf
figure 2).

The above argument is not exact because the relation Fn = En − En+1 is correct only when
the particle is attached to the n-cluster through a single link. The particle might be embedded
in an (n + 1)-cluster, splitting it into two (or more) pieces. In this case we cannot express Fn

in terms of the En. In figure 3 we illustrate the problem for the Bethe lattice of z = 3, for the
case of 3-clusters (the smallest cluster size where the difficulty arises).

We argue that, despite the inaccuracy, there are good reasons for pursuing the empty
interval approximation.

• For z = 2 the equations reduce to those found for the line, where the method is exact. It
may be useful to think of z as a continuous variable (in the spirit of analytical continuation),
in which case one expects good results for z = 2 + ε.

• The approach is exact in the limit z → ∞, where correlations do not play any role.
• The approximation is good even for intermediate values of z. Consider, for example, the

case of z = 3 (figure 3). The approximation amounts to assigning the same weight to
configurations (a) and (b). Since there are four ways for the particle to leave the 3-cluster
in configuration (a), and only one way in configuration (b), the difference between the
actual probability of (b) and the approximation (E2 − E3) matters only one-fifth of the
time. Moreover, the analysis of the Smoluchowski model shows us that the correlation
length is of the order of 1/(z − 2), that is, no more than a link’s length. Thus, the actual
difference between the probabilities of (a) and (b) cannot be large. The error involved in
processing larger clusters is of even lesser consequence.

• The approximation’s equation (9) is simple, linear and analytically tractable. The simplest
alternative would be a Kirkwood-like truncation of the infinite hierarchy of rate equations
for clusters of size n. Note, however, that an n-cluster has 2n states, so there would be
2n − 1 variables associated with it, and the truncation yields a non-linear equation at the
bottom of the hierarchy.

3.1. Results for coalescence

The empty interval equations may be tackled analytically. For example, following a Laplace
transform in the time variable the resulting system of difference equations with linear
coefficients can be solved in closed form [13], then the transform might be inverted (see
appendix). It is easier to focus directly on the limiting behaviour. For short times we assume
the Taylor series expansion,

En(t) =
∞∑

m=0

a(m)
n tm .
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Substituting in (9) and collecting like powers of t one obtains a recursion relation for the
a(m) in terms of the a(m−1). Since a(0)

n = En(0) (to satisfy initial conditions) is known,
successive coefficients can be generated mechanically up to any desired order. (This does not
provide a complete solution, for convergence of the Taylor series is limited to a finite radius,
tc = z/(z − 2).) The first few terms in the particle density are

ρ(t) = p − p2t + p2 1 − p + pz

z
t2 + · · · . (12)

It is interesting to compare this result to the mean-field prediction, ρ(t) = p/(1 + pt), that
expands to

ρ(t) = p − p2t + p3t2 + · · · , Mean-field.

We see that the first two terms are identical, but that the quadratic term in (12) is larger than
that in the mean-field expansion. This reflects the fact that the initial particle distribution is
Poissonian and devoid of correlations. Correlations, however, do develop, resulting in the
slowing down manifest in the quadratic term.

The long-time asymptotics is best analysed by passing to a continuum limit. As the process
evolves, the density of particles drops and n needs to be very large to find any particles within an
n-cluster. Under these conditions it makes sense to regard n as a continuous variable ‘length’,
x = na, where a is the length of a link. We then replace En(t) with E(x, t) and equation (9)
becomes

∂

∂ t
E(x, t) = z − 2

z
vx

∂2

∂x2
E(x, t), (13)

where v is the average speed for a particle to traverse a link. The boundary conditions are now
E(0, t) = 1, limx→∞ E(x, t) = 0, and the particle concentration, c(t) = ρ/a, is, according
to (5),

c(t) = − ∂ E

∂x

∣∣∣∣
x=0

.

To reconnect with the discrete limit, we take a = 1 and v = 1.
We look for a scaling solution, of the form

E(x, t) → �
( x

tβ

)
, as t → ∞.

Putting this back in (13) we see that we must have β = 1 and that �(x/t) satisfies the equation

�′(ξ) = − z − 2

z
�′′(ξ),

where primes denote differentiation with respect to the variable ξ = x/t . The boundary
conditions determine the solution

�(ξ) = exp

(
− z

z − 2
ξ

)
, (14)

and it follows that

ρ(t) → 1

/(
z − 2

z
t

)
, as t → ∞. (15)

Comparing the result (15) to the mean-field decay rate of ρ ∼ 1/t , when dρ/dt = −ρ2, we
see that the reaction rate is effectively diminished by a factor (z − 2)/z. Thus, the probability
of finding particles next to one another is (z − 2)/z times smaller than ρ2. This is reminiscent
of the depletion of the steady-state particle density near the trap in the Smoluchowski model,
and is explained by the reaction mechanism: particles in proximity are disfavoured in the long
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run, because they react more promptly and are removed from the system. When z → ∞
the correlations disappear and the mean-field limit is regained. For z → 2, the case of a
linear chain, the effective mean-field rate vanishes. This is in accord with the known result
ρ ∼ 1/

√
t [1], which is equivalent to a radically slower reaction rate, of effective order three:

dρ/dt = −k ′ρ3.

3.2. Annihilation

We now turn to annihilation, A + A → 0. Instead of En we work with Gn , the probability
that an n-cluster contains an even number of particles [3, 4]. One obtains for the Gns the
same rate equations as for the Ens, equation (9), but with the boundary conditions G0(t) = 1,
limn→∞ Gn(t) = 1/2. The initial condition is also somewhat different. The initial probability
that an n-cluster contains an even number of particles is

	n/2
∑
m=0

( n

2m

)
p2m(1 − p)n−2m = 1

2

(
p + (1 − p)

)n + 1
2

( − p + (1 − p)
)n

,

or

Gn(0) = 1
2 + 1

2 (1 − 2p)n, n = 1, 2, . . . . (16)

The short time analysis yields

ρ(t) = p − 2p2t + 2p2 1 + 2p(z − 1)

z
t2 + · · · , (17)

compared to the mean-field result, ρ(t) = p/(1 + 2pt), that expands to

ρ(t) = p − 2p2t + 4p3t2 + · · · Mean-field.

The early build-up of correlations shows up for the first time in the second-order term and
depends upon the initial density p: the correlations slow down the rate of decline, compared
to mean field, if p < 1/2, and accelerate the decline if p > 1/2. For p = 1/2 the effect of
correlations shows up first only in the third-order term. This effect parallels the exact result in
one dimension (z = 2).

For the long time analysis we follow a similar procedure as for coalescence, this time
leading to1

ρ(t) → 1

/(
2

z − 2

z
t

)
, as t → ∞. (18)

Again, in view of the corresponding mean-field equation, dρ/dt = −2ρ2, the long-time
asymptotic result may be understood if the likelihood of pairs of occupied sites is effectively
reduced by the factor (z − 2)/z.

4. Discussion

In conclusion, we have analysed the kinetics of diffusion-limited coalescence, A + A → A,
and annihilation, A + A → 0, in the Bethe lattice, by means of an approximation based on the
method of empty intervals. We find a result that is mean field in character, ρ ∼ 1/kt , where
the reaction rate undergoes a slow crossover from k = 1 (for coalescence) at early times to
k = (z − 2)/z at late times. (For annihilation these values are doubled.) The decrease in the
reaction rate stems from a build-up of correlations that disfavours particles in close contact. In
the case of annihilation, there is additional behaviour: if the initial particle density is larger than

1 The scaling function, analogous to �(ξ) of equation (14), is now 1/2 + (1/2) exp[−zξ/(z − 2)].
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1/2 then the reaction rate increases above the early mean-field rate, early on, before settling to
the lower value of the long-time asymptotic limit. The build-up of correlations weakens as the
coordination number of the graph, z, increases, and vanishes altogether in the limit of z → ∞,
where the mean-field limit is regained. The correlations are strongest in the singular limit of
z = 2, corresponding to a linear chain, where the density decay dramatically slows down to a
different functional form, ρ ∼ 1/

√
t [1].

Despite the approximation involved, we believe that our results reflect the essential
character of the true kinetics. The long-time behaviour can be explained by the following
heuristic argument. A particle at shell � from the origin advances to shell �+1 with probability
(z − 1)/z, and retreats to � − 1 with probability 1/z. Thus, the particle explores, on average,
(z − 1)/z − 1/z = (z − 2)/z new sites per unit time. Assuming a uniform background of
particles, this leads to dρ/dt = −[(z−2)/z]kρ2 (k = 1 for coalescence and 2 for annihilation),
in accord with the approximation results. (Note, however, that this argument fails to capture
the early time behaviour predicted by the empty interval approximation.)

Our method relies on translation invariance and does not generalize easily to finite lattices
(Cayley trees). In a finite tree of L shells the particles experience a drift from the centre to
the rim, which consists of roughly half of the nodes already for z = 3 (the case relevant
to dendrimers). Thus, the finite-size effect could be substantial and must be reckoned with.
Indeed, in computer simulations [11, 12] the density converges quickly to the long-time
behaviour predicted by our analysis; however, this lasts only until time t ≈ L (see, for
example, figure 5 in [12]), and thereafter the decay is considerably slower, ρ ∼ 1/t0.8 [11, 12].
Theoretical analysis of the long-time asymptotics in Cayley trees remains an important open
challenge.
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Appendix. Solution of the rate equations

We wish to solve the system of equations

d

dt
En(t) = n(z − 2) + 2

z

(
En−1 − 2En + En+1

)
, (A.1)

with the boundary conditions

E0(t) = 1, (A.2)

lim
n→∞ En(t) = 0, (A.3)

and the initial condition

En(0) = (1 − p)n . (A.4)

First, Laplace-transform in time:

φn(s) =
∫ ∞

0
e−st En(t) dt,
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so that the problem becomes

φn+1 − pnφn + φn−1 = cn (A.5)

where pn = 2 + zs
n(z−2)+2 , cn = − zEn(0)

n(z−2)+2 , and φ0 = 1/s, φ∞ = 0. Rewrite the underlying
homogeneous equation, An+1 − pn An + An−1 = 0, as

(n + a)An+1 − 2(n + b)An + (n + a)An−1 = 0, (A.6)

where a = 2/(z − 2), b = (2 + sz/2)/(z − 2). Upon making the substitution

An =
∫ 1

0
xn−1 f (x) dx, (A.7)

the terms linear in n may be reinterpreted as derivatives of f (x) (using integration by parts),
and yielding the consistency relation,

f ′(x)

f (x)
= 2

(z − 2)x
− zs

(z − 2)(1 − x)2
+ 2

1 − x
,

leading to

f (x) = x2/(z−2)

(1 − x)2
exp

(
− zs

(z − 2)(1 − x)

)
, (A.8)

(up to an arbitrary constant factor). This completes the solution of the homogeneous equation.
To solve the original inhomogeneous equation, make the substitutions

φn = An Bn, Bn − Bn−1 = hn,

yielding

−An−1hn + An+1hn+1 = cn.

This has the solution

Bn = 1

A0s
+

n∑
k=1

hk, (A.9)

hn = A0 A1

An−1 An
h1 +

n−1∑
k=1

Ak

An−1 An
ck . (A.10)

Note that the first term on the RHS of (A.9) guarantees fulfilment of the boundary condition
φ0 = 1/s. h1 is determined from the remaining boundary condition, φ∞ = 0, and taking into
account that limn→∞ An = 0,

h1 = −
∞∑

k=1

k−1∑
l=1

Alcl

Ak−1 Ak

/ ∞∑
k=1

A0 A1

Ak−1 Ak
. (A.11)

This concludes the formal solution of the problem.
Manageable expressions may be obtained for the special case of p = 1 (all lattice sites

are occupied, initially), where cn = 0, n � 1, leading to h1 = 0, and φ1 = A1/s A0.
Finally, upon evaluating the pertinent integrals, we find for the Laplace transform of the density,
ρ̂(s) = 1/s − φ1(s):

ρ̂(s) = 1

s

(
1 − 2

z − 2

U(c, 2, cs)

U(c − 1, 2, cs)

)
, (A.12)

where c = z/(z − 2) and U(·) is Kummer’s confluent hypergeometric function [14]. Inversion
of this expression in the limits of short and long times agrees with the results derived in the
paper by independent methods.
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